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1 Introduction

DISCLAIMER: This are contemporary notes I used to answer the question on what are the main
differences between SCO and Elo while we were working towards Lanctot et al. (2024). They are
still very much work in progress but nonetheless, contain interesting material to understand SCO
and Elo.

Recently, we introduced in Lanctot et al. (2024) Soft Condorcet Optimization (SCO). Frequently,
we got asked the question on how SCO differs from Elo (Elo, 1967), the de facto rating system in
the evaluation of LLM agents (Chiang et al., 2024), and how it could overcome the limitations of
Elo as a rating method widely discussed in the literature (Herbrich et al., 2006; Shah et al., 2015;
Balduzzi et al., 2018; Bertrand et al., 2023; Lanctot et al., 2023).

In this document, I offer an analysis of the structure of pairwise comparison data leveraged by
SCO and Elo, the relationship between Elo and SCO objectives, including a characterization of
Elo stationary points and the complete understanding of their properties at convergence explaining
(predicting) the results on Penthatlon data from VasE and the AAMAS paper example in Section
4.1. Similarly, I present a characterization of SCO stationary points and their relationship with the
margin matrix and the covariance of the predictions, and what are the main differences between a
stochastic gradient descent update between Elo and SCO. Lastly, I briefly discuss the problem of
inconsistent estimation of Elo through MLE.

2 Soft-Condorcet Optimization: The Origins

The main idea behind Soft Condorcet Optimization emanates from the Kemeny-Young voting
rule (Kemeny, 1959; Young and Levenglick, 1978). This voting rule computes a function that
minimizes the sum of Kendall-tau distances between the ranking and all the votes in the preference
profile:

min
fw([⪰])∈Π(A)

∑
v∈[⪰]

Kd(v, fw([⪰])).

Given a preference profile and parameters θ (ratings), we define a loss function:

L([⪰], A, V, θ) =
∑

v∈[⪰]

∑
i,j∈{0,1,··· ,|v|−1},i<j

Dv(θv[i], θv[j]), (1)

2.1 Distance-based Ranking Models

The problem of selecting an ordering that satisfies voters preferences has also been studied in statis-
tics and psychology through probabilistic models defined over the space of permutations (Diaconis,
1988; Marden, 1995; Alvo and Yu, 2014). In particular, distance-based models (Fligner and Verducci,
1986) assume that voters have a true, collective preference over alternatives v∗, and the probability
of observing any individual preference v ∈ V is proportional to its distance to this ranking. Thus,
the probability of any individual vote v ∈ V is

p(v) ∝ exp(−K(v, v∗)) (2)
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where K is a distance between rankings.

The objective in Equation 1 is a particular instance of maximum likelihood estimation (MLE) of
the true collective preference v∗, when the choice of distance is the Kendall-tau distance Kd and the
ranking among alternatives is represented by scalar ratings θ.

2.2 Derivation

The properties of these models under several choices of K, including the Kendall-tau distance Kd,
have been studied in the literature (Critchlow et al., 1991).Let π ∈ Π be a ranking of order k. The
generalized distance-based probabilistic model over the space of ranks Fligner and Verducci (1986)
is given by: The natural interpretation of this model is that the probability of observing a rank
π is related to its distance from the (Kemeny-Young) true/consensus/ rank π∗ ∈ Π (Fligner and
Verducci, 1986; Marden, 1995).

Let p∗(π) be the true distribution of rankings under the consensus π∗, and let pθ(π) be the distance-
based model under the parameterized consensus distribution πθ, implicitly represented by each player
parameter θ = [θ1, . . . , θn], such that:

pθ(π) ∝ exp(−d(π, πθ)) (3)

By the KL divergence formulation of the MLE:

min
θ

DKL(p∗(π)||pθ(π)) (4)

we optimize the straightforward objective:

min
θ

Eπ∼p∗(π) [d(π, πθ)] (5)

2.3 A Family of Methods

Equation 5 describes a family of ranking methods, for which SCO is obtained by setting d = Kd the
Kendal-tau distance or its continuous approximation such that:

K̂d(π, πθ) =
∑

(i,j)∈(k
2)

σ(θπ[i] − θπ[j]) (6)

Substituting in dKem and p∗(π) by the sketch (dataset) D.

min
θ

Eπ∼D

 ∑
(i,j)∈(k

2)
σ(θπ[i] − θπ[j])

 (7)

3 The Elo Rating System and Rankings

We adapt the Elo rating to operating over rankings to pairwise comparisons. First, we note that a
complete rank (total order) π contains

(
k
2
)

pairwise comparisons. Notationally, let {X1, . . . , X(k
2)} be

a set of
(

k
2
)

independent Bernoulli distributed random variables Xi ∼ Bern(p). This is equivalent
to Xi Bradley-Terry models (Bradley and Terry, 1952; Hunter, 2004) the probability P (a ≻ b)
where P (Xi = 1) = p represents P (a ≻ b) and P (Xi = 0) = 1 − p represents P (b ≻ a) (no ties).
Furthermore, assume a set of rating vectors θ = [θ1, . . . , θk] such that:

P (a ≻ b) = p = σ(θa − θb) = eθa

eθa + eθb
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Let π∗ be the true ranking among k players and πθ our estimated ranking. By the DKL formulation
of MLE, we have again that:

min
θ

DKL

(
p∗(X1, . . . , X(k

2))
∥∥p(X1, . . . , X(k

2)|πθ)
)

(8)

min
θ

(k
2)∑

i=1
DKL

(
p∗(Xi)

∥∥pθ(Xi)
)

(9)

max
θ

(k
2)∑

i=1
Exi∼p∗(Xi) [log pθ(xi)] (10)

max
θ

(k
2)∑

i=1
p∗(xi = 0) log(1 − σ(θa − θb)) + p∗(xi = 1) log σ(θa − θb) (11)

max
θ

(k
2)∑

i=1
p∗(xi = 0) log σ(θb − θa) + p∗(xi = 1) log σ(θa − θb) (12)

min
θ

(k
2)∑

i=1
−(1 − yi) log σ(θb − θa) − yi log σ(θa − θb) (13)

From (10) to (11) we used 1 − σ(x) = σ(−x), p∗(xi = 1) = y as the {0, 1} outcomes from
(

k
2
)

results
in the total order, and maxθ f(θ) = minθ −f(θ) to get the binary cross entropy loss.

4 Unify Representation of Pairwise Comparisons

In matrix form, the data is a collection of vectors Xk = [0, . . . , 1i, . . . , −1j , . . .], where the i-th and
j-th entries are Xki = 1, Xkj = −1 if alternative i ≻ j. We denote by X ∈ Rm×n of m pairwise
comparisons among all the n alternatives. Also, let Θ = [θ1, . . . , θi, . . . , θj , . . . , θn] denotes each
alternative ranking such that XkΘ = θi − θj .

4.1 Properties of The Design Matrix

We can write the design matrix X as the composition of a win and a loss matrix:

X = X+ + X− (14)

where X+ ∈ Rm×n contains only the wins (Xki = 1), and X− holds only the negative entries
(Kjj = −1). Therefore, the Gramian matrix LL = XTX can be decomposed as:

L = XTX = (X+ + X−)T(X+ + X−) (15)
= XT

+ X+ + XT
+ X− + XT

− X+ + XT
− X− (16)

= W − P T − P + D (17)

where each of the four matrices W, M, MT and D have the following interpretations.

First, the wins matrix W = XT
+ X+ is a diagonal matrix W ∈ Zn×n where each entry Wii represents

the total number of pairwise comparisons won by alternative i. Conversely, the losses matrix
D = XT

−X− is a diagonal matrix D ∈ Zn×n where each entry Dii contains the number of comparisons
alternative i lost. And finally, the matrix P = XT

− X+, or more precisely −M , is the pairwise
matrix, where each entry −Pij counts the number of times alternative i is preferred to alternative
j. Moreover, note that P T = (XT

− X+)T = XT
− X+ is the transpose of the matrix P . The margin

matrix is M = P − P T.
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4.2 Outcomes

The pairwise comparison problem is a imbalanced binary classification problem where only the
positive class is present. As such, the target output is always the constant vector Y = 1m. A
vector will play an essential role next is C = XTY = XT1m ∈ Rn. For every alternative i, this
vector contains in Ci ∈ Z the sum of pairwise comparison won and lost by alternative i. Note that,
following the decomposition of the design matrix X = X+ + X−, we have that:

C = XT1m = (X+ + X−)T1m = XT
+1m + XT

−1m = C+ + C− (18)

where XT 1m computes the sum of the columns of the design matrix X, or its positive-negative
decomposition.

4.3 Working Examples

Example 1. In the Penthatlon example on Lanctot et al. (2023), we have the following:

XTX =

10 −5 −5
−5 10 −5
−5 −5 10

 =

6 0 0
0 3 0
0 0 6

 −

0 4 2
1 0 2
3 3 0

 +

4 0 0
0 7 0
0 0 4

 −

0 1 3
4 0 3
2 2 0

 (19)

and
C = XT1m =

[
2 −4 2

]
(20)

Example 2. In the AAMAS paper example

XTX =

10 −5 −5
−5 10 −5
−5 −5 10

 =

3 0 0
0 8 0
0 0 4

 −

0 0 3
5 0 3
2 2 0

 +

7 0 0
0 2 0
0 0 6

 −

0 5 2
0 0 2
3 3 0

 (21)

and
C = XT1m =

[
4 −6 2

]
(22)

Example 3. For the Rock-Paper-Scissors game, we have the following:

XT X =

 2 −1 −1
−1 2 −1
−1 −1 2

 =

1 0 0
0 1 0
0 0 1

 −

0 0 1
1 0 0
0 1 0

 +

1 0 0
0 1 0
0 0 1

 −

 0 −1 0
0 0 −1

−1 0 0

 (23)

and
C = XT1m =

[
0 0 0

]
(24)

5 Relationship Between The Objectives

We compare Elo and SCO by understanding the connection between their objectives. First, for a
set of m pairwise comparisons, the Elo objective is the negative log-likelihood:

m∑
k=1

−(1 − yk) log(1 − σ(XkΘ)) − yk log σ(XkΘ) (25)

and note that, for the pairwise comparison problem, all yk = 1, so the traditional NLL objective
reduces to:

NLL(Θ) =
m∑

k=1
− log σ(XkΘ) (26)

which can be written in matrix form as:

NLL(Θ) = − log σ(XΘ) (27)
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where the logarithm and the sigmoid fucntions are applied entrywise to the vector XΘ. And similarly,
the SCO objective can be rewritten such as:

SCO(Θ) = 1m − σ(XΘ) (28)

by leveraging the identity σ(−x) = 1 − σ(x) and where 1m is as before.

5.1 Stationary Points

5.1.1 Elo.

The gradient of the NLL objective, written in matrix form, is:

∇ΘNLL(θ) = −XT(1m − σ(XΘ)) (29)

Therefore, the stationary points of the Elo objective are characterized as:

∇ΘNLL(Θ) = −XT[1m − σ(XΘ)] = 0 (30)

Recall, from our analysis of the pairwise data representation, the outcome matrix C = XT1m is
the vector of cumulative wins and losses for every alternative. Therefore, Elo stationary points are
those where the sum of predictions match each alternative cumulative wins and losses.

XTσ(XΘ) = XT1m (31)

This result explains why, in the Penthatlon data, A and C receive the exact same gradients and
have the same ratings, as their sum of wins and losses is the same. It also explains why, in the new
example on the AAMAS paper, A receives a higher rating than C.
Proposition 1. Let a and b be two alternatives with ratings θi and θj, respectively. If i and i have
the same win-loss aggregated statistics XT

a 1n = XT
b 1n, then alternatives a and b will have equal

ratings θa = θb when minimizing Elo by gradient descent.

Proof. Straightforward from Equation 31.

5.1.2 SCO

In contrast, the gradient of the SCO objective in matrix form is computed as:

∇ΘSCO(Θ) = −XT[(1m − σ(XΘ)) ◦ σ(XΘ)] (32)

where ◦ represents Hadamard’s product. The stationary points of SCO are then characterized by:

XT[(1m − σ(XΘ)) ◦ σ(XΘ)] = 0 (33)

Understanding the stationary points SCO requires a more involved algebraic manipulation and
noticing that:

σ(θi − θj)[1 − σ(θi − θj)] = σ(θj − θi)(1 − σ(θj − θi)) (34)
is the covariance of the predictions, and as such, every comparison between alternatives i, j will
result in entries:

(wij − lij)σ(θi − θj)[1 − σ(θi − θj)]
where wij and lij are the wins and losses for alternative i over j for every index i > j. Therefore,
the stationary point condition of SCO reduces to:

[M ◦ Σ]1p = 0 (35)

where M ∈ Rn×n is the skew-symmetric margin matrix and Σ ∈ Rn×n is a symmetric covariance
matrix Σij = Σji = [σ(θi − θj)[1 − σ(θi − θj)]].

NOTE: more analysis is needed here. Why these stationary points are better than Elo’s? I sense a
connection here with Maximal Lotteries?
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Example 4. For the AAMAS paper example, one can verify that Equation 33 reduces to0 5 −1
0 0 −1
1 1 0

 ◦

Σ11 Σ12 Σ13
Σ12 Σ22 Σ23
Σ13 Σ23 Σ33

 1
1
1

 (36)

where Σij = Σji = σ(θi − σj)[1 − σ(θi − θj)]

The expression in (22) is equivalent to

diag(MInΣT ) = 0 (37)
diag(MΣ) = 0 (38)

5.2 Stochastic Gradient Step

We briefly rewrite the SCO objective to contrast it with the NLL objective underpinning Elo.

=
∑

v∈[⪰]

∑
i,j∈I2(v)

σ(θj − θi) (39)

=
∑

v∈[⪰]

∑
i,j∈I2(v)

1 − σ(θi − θj) (40)

SCO(θ) =
∑

v∈[⪰]

∑
i,j∈I2(v)

yij − σ(θi − θj) (41)

Therefore, for every entry Xk in the design matrix containing the pairwise comparison i ≻ j, the
ratings θi, θj ∈ Θ receive from the SCO objective the gradients:

∇θiSCO(θ) = −∇θσ(θi − θj) (42)
= −σ(θi − θj)(1 − σ(θi − θj)) (43)

∇θj SCO(θ) = −∇θσ(θi − θj) (44)
= σ(θi − θj)(1 − σ(θi − θj)) (45)

Then, from the Elo objective each involved rating receive the gradients:

∇θi
NLL(θ) = −∇θ log σ(θi − θj) (46)

= −(1 − σ(θi − θj)) (47)
∇θj NLL(θ) = −∇θj log σ(θi − θj) (48)

= 1 − σ(θi − θj) (49)

Therefore, one stochastic gradient descent (SGD) update of SCO is performed as:[
θi

θj

]
k

=
[

θi

θj

]
k−1

− ησ(θi − θj)
[
−σ(θj − θi)
σ(θj − θi)

]
k−1

(50)

while the NLL update through SGD looks like:[
θi

θj

]
k

=
[

θi

θj

]
k−1

− η

[
−σ(θj − θi)
σ(θj − θi)

]
k−1

(51)

Conclusion 1. A damping coefficient ϵ = σ(θi − θj) is the difference between SCO and Elo
objectives.
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6 Problems with Elo

Inconsistent Estimator. Chen et al. (1999) established that an MLE estimator is a strongly
consistent estimator of a Generalized Linear Model (GLM) if the eigenvalues of the Gramian XTX
are bounded away from 0 (i.e., XTX is non-singular). But, in the data representation Elo leverages,
the Gramian XTX is always singular. Therefore, MLE may not be the appropriate procedure
to estimate the parameters. We confirmed this empirically. Both GLM parameterizations of the
Bernoulli distribution (logit and probit) present the same issue with the Pentathlon and AAMAS
example data.

7 Future Work

There seems to be a connection between SCO & Elo and diffusion processes on graphs.
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A Scrapbook

Quasi-Newton secant condition:

Bk[θk − θk−1] = ∇f(θk) − ∇f(θk−1) (52)

Let’s compute ∆fk
= ∇f(θk) − ∇f(θk−1) for the NLL loss.

∆f =
[
−σk

ji

σk
ji

]
−

[
−σk−1

ji

σk−1
ji

]
(53)

=
[
−σk

ji + σk−1
ji

σk
ji − σk−1

ji

]
(54)

=
[
σk−1

ji − σk
ji

σk
ji − σk−1

ji

]
(55)

Then, we know that θk+1 = θk + sk. Thus we have the following:

σk
ji = σ(θk

j − θk
i ) (56)

= σ(θk−1
j + sk

j − (θk−1
i + sk

i )) (57)
= σ(θk

j − θk
i + (sk

j − sk
i )) (58)

And thus,

σk+1
ji − σk

ji = σ(θk
j − θk

i + (sk
j − sk

i )) − σ(θk
j − θk

i ) (59)
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We need the following identity:

σ(x + c) − σ(x) = ex+c

1 + ex+c
− ex

1 + ex
(60)

= ex+c(1 + ex) − ex(1 + ex+c)
(1 + ex+c)(1 + ex) (61)

= ex+c − ex

(1 + ex+c)(1 + ex) (62)

= ex(ec − 1)
(1 + ex+c)(1 + ex) (63)

= σ(x) ec − 1
1 + ex+c

(64)

= σ(x) 1
1 + ex+c

[ec − 1] (65)

= σ(x)σ(−x − c)[ec − 1] (66)
= σ(x)[1 − σ(x + c)][ec − 1] (67)

Thus,

∆f =
[

σ(θk
j − θk

i )[1 − σ(θk
j − θk

i + (sk
j − sk

i ))][esk
j −sk

i − 1]
−σ(θk

j − θk
i )[1 − σ(θk

j − θk
i + (sk

j − sk
i ))][esk

j −sk
i − 1]

]
(68)

= [esk
j −sk

i − 1]
[

σ(θk
j − θk

i )[1 − σ(θk
j − θk

i + (sk
j − sk

i ))]
−σ(θk

j − θk
i )[1 − σ(θk

j − θk
i + (sk

j − sk
i ))]

]
(69)

A.1 Negative Log-Likelihood

Hessian. The Hessian of the NLL objective is given by:

HNLL = XT[Ŷ (Y − Ŷ )T]X (70)

A.2 SCO

B How to Fix Your Elo

Intepretation Of A Complete Ranking.. We can leverage the intuition behind the Plackett-
Luce model to understand a ranking, e.g., R = A > B > C, as a tournament when first A won and
everyone else lost so [1, −1, −1], next B won and everyone else (C) lost so [0, 1, −1].

p(i wins) = 1
1 +

∑
k ̸=i eθk−θi

(71)

B.1 Second Order Analysis

B.1.1 Negative Log Likelihood

We start by the NLL(θ)

HNLL =
[
∇θii ∇θij

∇θji
∇θjj

]
(72)
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∇θii
= ∇θi

∇θi
NLL(θ) (73)

= ∇θi
[−(1 − σ(θi − θj))] (74)

= ∇θi
σ(θi − θj) − 1 (75)

= σ(θi − θj)[1 − σ(θi − θj)] (76)
= σ(θi − θj)σ(θj − θi) (77)

∇θij
= ∇θj

∇θi
NLL(θ) (78)

= ∇θj
σ(θi − θj) − 1 (79)

= −σ(θi − θj)[1 − σ(θi − θj)] (80)
= −σ(θi − θj)σ(θj − θi) (81)

∇θji
= ∇θi

∇θj
NLL(θ) (82)

= ∇θi
(1 − σ(θi − θj)) (83)

= −σ(θi − θj)[1 − σ(θi − θj)] (84)
= −σ(θi − θj)σ(θj − θi) (85)

∇θjj
= ∇θj

∇θj
NLL(θ) (86)

= ∇θj
(1 − σ(θi − θj)) (87)

= σ(θi − θj)[1 − σ(θi − θj)] (88)
= σ(θi − θj)σ(θj − θi) (89)

HNLL =
[

σ(θi − θj)σ(θj − θi) −σ(θi − θj)σ(θj − θi)
−σ(θi − θj)σ(θj − θi) σ(θi − θj)σ(θj − θi)

]
(90)

= σ(θi − θj)
[

σ(θj − θi) −σ(θj − θi)
−σ(θj − θi) σ(θj − θi)

]
(91)

Singular Hessian. The Hessian is singular in this case.

det(HNLL) = 0 (92)

Thus, we could compute the pseudo inverse H+:

H+
NLL = (HT H)−1HT (93)

= 1
2

[
1

σijσji
0

0 1
σijσji

]
(94)

Then,

H+
NLL(θ)∇θNLL(θ) = 1

2

[
− 1

σij
1

σij

]
(95)

B.2 Connection With Graph Diffussion

L = XT X = (W − M) + (L − MT ) (96)

B.2.1 Connection with The Comparison Laplacian

SCO, Elo & Comparison Multigraph. The Gramian matrix L = XTX is the Laplacian matrix
of the comparison multigraph. In this equivalence, X is the gradient operator (incidence matrix),
and XT is the divergence operator (the transpose or conjugate).


